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Abstract

Background

The mosquito Aedes koreicus (Edwards, 1917) is a recent invader on the European conti-

nent that was introduced to several new places since its first detection in 2008. Compared to

other exotic Aedes mosquitoes with public health significance that invaded Europe during

the last decades, this species’ biology, behavior, and dispersal patterns were poorly investi-

gated to date.

Methodology/Principal findings

To understand the species’ population relationships and dispersal patterns within Europe, a

fragment of the cytochrome oxidase I (COI or COX1) gene was sequenced from 130 mos-

quitoes, collected from five countries where the species has been introduced and/or estab-

lished. Oxford Nanopore and Illumina sequencing techniques were combined to generate

the first complete nuclear and mitochondrial genomic sequences of Ae. koreicus from the

European region. The complete genome of Ae. koreicus is 879 Mb. COI haplotype analyses
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identified five major groups (altogether 31 different haplotypes) and revealed a large-scale

dispersal pattern between European Ae. koreicus populations. Continuous admixture of

populations from Belgium, Italy, and Hungary was highlighted, additionally, haplotype diver-

sity and clustering indicate a separation of German sequences from other populations,

pointing to an independent introduction of Ae. koreicus to Europe. Finally, a genetic expan-

sion signal was identified, suggesting the species might be present in more locations than

currently detected.

Conclusions/Significance

Our results highlight the importance of genetic research of invasive mosquitoes to under-

stand general dispersal patterns, reveal main dispersal routes and form the baseline of

future mitigation actions. The first complete genomic sequence also provides a significant

leap in the general understanding of this species, opening the possibility for future genome-

related studies, such as the detection of ‘Single Nucleotide Polymorphism’ markers. Consid-

ering its public health importance, it is crucial to further investigate the species’ population

genetic dynamic, including a larger sampling and additional genomic markers.

Introduction

The introduction of alien species to new territories and biological invasions represent an

increasing problem in our globalized world. The process has increased with modern trade and

travel, which facilitates and intensifies the introduction of invasive alien species [1]. Among

others, the invasion of mosquitoes of Asian origin got a highlighted attention in Europe [2].

Multiple Invasive Mosquito Species (IMS) belonging to the genus Aedes have been introduced

and have established during the last decades, generating a serious nuisance for people, repre-

senting a public health threat due to their potential vector competence for exotic and/or

endemic pathogens [3] and a possible but unknown impact on the native ecosystem. Contrary

to the Asian tiger mosquito Aedes albopictus (Skuse, 1894) and the Asian bush mosquito Aedes
japonicus japonicus (Theobald, 1901), little is known about another invader, Aedes koreicus
(Edwards, 1917). This Aedes Invasive Mosquitoes (AIM) has been proposed as an additional

global invasive mosquito with good adaptation capability [4]. Compared to Ae. albopictus, it

can tolerate lower temperatures, with faster development and being able to become more

abundant than the tiger mosquito during the colder months of the breeding season [5]. Aedes
koreicus is also better adapted to urban environments than the forest-dwelling species Ae. j.
japonicus [6]. These characteristics suggest that Ae. koreicus might continue to expand across

the continent.

Aedes koreicus was first detected out of its native area in Belgium in 2008, in an industrial

area in Maasmechelen, province of Limburg, where it is established and overwintering [7].

While the population is still present, it does not seem to colonize the surrounding territory [8].

Then, the species was found in northeast Italy in 2011, in the province of Belluno, Veneto

region [9], where it has rapidly expanded its range. In ten years, the species infested the neigh-

boring provinces i.e. Vicenza, Treviso, and Trento in Trentino-Alto Adige region, and also

reached more distant places in the Lombardia, Friuli Venezia Giulia, as well as Liguria regions

in northern Italy [10–13]. Furthermore, in 2013, the species was introduced to Sochi on the

Black Sea coast of Russia [14, 15], and observed at the Swiss-Italian border region [16].
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Meanwhile, a revision of Ae. japonicus specimens collected in Slovenia confirmed the intro-

duction of Ae. koreicus into the village of Lovrenc na Dravskem Polju, northeast Slovenia in

2013 [17]. The species appeared in the federal state of Bavaria, southern Germany in 2015 [18],

and a few years later, in Wiesbaden, in the federal state of Hessen, where a population is now

established [19–21]. At the same time, Ae. koreicus was found in Baranya county, southwest

Hungary [22], where an overwintering but localized population has established [23], but a few

years later (2019), it appeared in the capital city of Budapest, north-central Hungary [24].

Recently, Ae. koreicus was detected in Western Austria [25], on the Southern Coast of the Cri-

mean Peninsula [26], and in the Republic of Kazakhstan [27].

Since information is restricted to countries where exotic mosquito surveillance activities

are implemented, the above mentioned regions only depict our current knowledge of the spe-

cies distribution [28]. Beyond that, knowledge on its dispersal patterns and the basic mecha-

nisms that drive its distribution in Europe is lacking, although, that information is essential for

the projection of future scenarios, particularly critical for the implementation of appropriate

exotic mosquito monitoring and management plans. Finally, it is still unclear whether the first

detected Belgian population represents the source population of further spreading events

across Europe or if we faced multiple introduction events from the species’ native range—or a

combination of both over time.

In the present study, we analysed correlations between the European populations of Ae. kor-
eicus based on population genetic approaches. To do so, an approximately 1000 base pairs frag-

ment of the cytochrome oxidase I (COI or COX1) gene was examined at a pan-European scale

to reveal haplotype diversity and phylogeographic relatedness throughout the known Euro-

pean populations. We also provide the first complete mitochondrial and draft nuclear genome

of the species Ae. koreicus by long-read sequencing (Oxford Nanopore) coupled with Illumina

sequencing methods.

Material and methods

Mosquito samples

To explore the genetic diversity of Ae. koreicus within Europe, we analysed a total of 130 mos-

quito specimens, originating from nine geographically separated populations from five Euro-

pean countries (Belgium, Germany, Hungary, Italy, and Slovenia) where the species is

established, or was recently introduced and it is expected to become established soon. The

mosquitoes were collected within the framework of local or national monitoring programs,

from urban settlements, including parks, gardens, industrial areas, and cemeteries between

2008 and 2020. Eggs were sampled using oviposition traps, larvae originated from water bod-

ies, and adults were collected either with Frommer Updraft Gravid (John W. Hock Comp.,

Gainesville, FL) or BG-Sentinel traps (Biogents, Regensburg, Germany) in combination with

CO2 (for more details, see S1 Table). The eggs were first hatched in the laboratory, then larvae

and adult specimens were preliminarily identified as Ae. koreicus using relevant morphological

identification keys [2, 20].

DNA extraction and COI sequencing

Nucleic acid from homogenized mosquitoes was extracted individually, using the NucleoSpin

DNA Insect Kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany), following the manu-

facturer’s instructions. The mitochondrial COI region was amplified using the primer combi-

nation LCO1490 and UEA8 (targeting a ~1000 bp long fragment) [29, 30], and PCR reactions

were performed with the Platinum II Taq Hot-Start DNA Polymerase kit (Invitrogen, CA,

USA), using 0.5 μl of the enzyme, 2 μl of 10x buffer, 0.6 μl of 50mM MgCl2, 1–1 μl of the
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forward and reverse primer solutions (10 μM), 0.2 μl dNTP mix (Promega, USA), 14.7 μl

nuclease-free water, and used 2 μl of the DNA extract as a template. The PCR protocol

included 5 cycles with the following parameters: 30 sec at 94˚C, 30 sec at 45˚C, and 1 min at

72˚C, followed by 35 cycles of denaturation for 30 sec at 94˚C, annealing for 1 min at 51˚C,

and 1 min of elongation at 72˚C, ending with a final extension step at 72˚C for 10 minutes.

PCR products were purified using NEBMonarch PCR and DNA Clean-up Kit (New England

Biolabs, USA), following the manufacturer’s instructions. The sequencing was processed by

Eurofins Genomics Custom DNA Sequencing service (Eurofins Genomics, Germany).

Phylogeographic and haplotype analyses

To characterize the dispersal routes within Europe a discrete phylogeographic analysis was

implemented using BEAST v1.10.4, under the HKY substitution model, with a strict molecular

clock and constant population size parameters. Substitution model selection was performed

using the IQ-TREE web server tool beforehand [31]. To effectively perform a discrete analysis,

the Bayesian stochastic search variable selection (BSSVS) and the standard symmetric substitu-

tion were combined [32]. The analysis was run for 10,000,000 generations and sampled every

10,000 iterations, 10% were discarded as burn-in. Thereafter, TRACER v1.6.0 was used to eval-

uate the Effective Sampling Size (ESS > 200) [33]. Moreover, the MCC tree was annotated

using TreeAnnotator v1.10.4 and visualized in FigTree v1.4.4. Lastly, SPREAD3 v0.9.7 was

used to calculate Bayes Factor (BF) from the resultant log file for each transition rate and to

visualize the MCC tree. DnaSP v6 was used to assess recombination, then to calculate Tajima’s

D and generate a haplotype file [34]. In the end, a median-joining haplotype network analysis

was carried out in POPART software with default setting/epsilon = 0 [35].

Oxford nanopore sequencing

For whole genome sequencing efforts, the DNA of a laboratory-reared female mosquito was

used. The mosquito larva for laboratory rearing was collected in June 2019, Pécs, Hungary.

Nucleic acid extraction was performed with the NucleoSpin DNA Insect Kit (Macherey-Nagel

GmbH & Co. KG, Düren, Germany), following the manufacturer’s instructions. A final con-

centration of 75.8 ng/μl nucleic acid eluate was obtained and used as a template for the Nano-

pore library preparation. To this end, the genomic DNA was sheared using g-Tube (Covaris,

U.K.) to reach 8 Kbp average fragment size. For the library preparation 1.6 μg sheared genomic

DNA was used (Ligation Sequencing Kit, Oxford Nanopore Technologies, Oxford, UK). The

DNA was end-prepped with the NEBNext FFPE Repair and Ultra II End Prep Kit and purified

using Agencourt AMPure XP (Beckman Coulter Inc., Brea, CA, USA). Then the adapter liga-

tion was performed using NEBNext Quick T4 DNA Ligase. Finally, the adapted library was

purified using Agencourt AMPure and the final concentration was determined using the

Qubit 3.0 fluorometer. The library was mixed with ONT running buffer and loading beads,

and primed on a FLO-MIN106 9.4.1 SpotON Flow Cell attached to the MinION device (run-

ning time: 96 hours). As a result of this sequencing protocol, we obtain the mitochondrial

sequence data along with nuclear genomic sequence data.

Illumina sequencing

A final concentration of 75.8 ng/μl nucleic acid eluate from the same laboratory-reared female

mosquito was used for the Illumina sequencing library preparation. The latter was prepared

using NEBNext Ultra II FS DNA Library Prep Kit for Illumina (NEB, Ipswitch, MA, USA).

Briefly, 400 ng genomic DNA was fragmented, the end was prepped and the adapter was

ligated. Then magnetic beads size selection was performed to select 250–300 bp insert size
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fragments. Finally, the library was amplified according to the manufacturer’s instructions. The

quality of the library was checked on a 4200 TapeSation System using D1000 Screen Tape, the

quantity was measured on a Qubit 3.0 fluorometer. Illumina sequencing was performed on a

NextSeq550 instrument (Illumina, San Diego, CA, USA) with a 2x151 paired-end run configu-

ration (Illumina PE). As a result of this sequencing protocol, we obtain the mitochondrial

sequence data along with nuclear genomic sequence data.

Data filtering

Obtained reads from both high-throughput sequencing techniques were used to create a draft

genome assembly. Beforehand, reads were filtered as follow. Porechop [36] with default

parameters was used to remove residual ONT adapters. In the case of ONT, reads with mean

quality scores> 7 were retained and used for further processing. For the Illumina PE data,

adaptor sequences and low-quality reads were filtered out using the program TrimGalore [37].

This dataset (BioSample accession: SRR14975286) was normalized with Bbnorm [38] to set the

coverage to 50x. In total, 32.05 Gb of Nanopore (BioSample accession: SRR14975285) and 99

Gb of raw Illumina PE data were produced.

Genome assembly

Nanopore reads were assembled into contigs by Canu [39] with default parameters. We evalu-

ated the completeness of the assembly with the Benchmarking Universal Single-Copy Ortho-

logs (BUSCO, v 4.1.2) [40] software, and we used the Diptera lineage dataset (diptera_odb10),

including 56 species and 3285 BUSCOs. The assembly was further polished with the Illumina

PE normalized reads. The accuracy of the draft genome was increased with two additional iter-

ations by Pilon [41]. These two assemblies were also examined with BUSCO.

Results and discussion

COI haplotype diversity and phylogeography of Ae. koreicus in Europe

In the present paper, we provide the first insight into the dispersal patterns of Ae. koreicus
within Europe using genetic approaches. Although phylogenetic investigations of the invasive

populations of Ae. albopictus [42, 43] and Ae. japonicus [44, 45] were undertaken over the last

decades, to date, for Ae. koreicus only morphological characterizations are available from Bel-

gium [7] and Germany [20]. Here we analysed mtDNA COI partial sequences from 130 Ae.
koreicus mosquitoes that were collected in different countries in Europe (GenBank accessions:

OK668709—OK668837 and JF430393 (S1 Table)). A total of 31 different haplotypes were

identified from specimens collected in nine geographically isolated populations of five coun-

tries. This is reflecting high levels of genetic diversity between and within the examined

regions. Among them, five haplotypes (Hap_3, Hap_6, Hap_11, Hap_12, Hap_16) are present

in higher relative frequencies (i.e. relative to the sample set), while all the other identified hap-

lotypes refer to single samples (Fig 1). The most frequent haplotype (Hap_3, scored in 34 spec-

imens) is also the most widespread. It is present in most of the investigated regions, including

Belgium (in 4 specimens), all the investigated regions of Italy (in 17 specimens), both Baranya

and Budapest in Hungary (in 12 specimens), as well as in Slovenia (in 1 specimen). The second

most frequent haplotype (Hap_12, scored in 30 specimens) seems geographically restricted to

Italy (in 27 specimens, mainly Trentino-Alto Adige and Veneto regions) and Hungary (in 3

specimens). Haplotype Hap_6 (scored in 18 specimens) is present mainly in Hungary (in 9

specimens), as well as in Belgium (in 6 specimens) and Italy (in 3 specimens). Haplotype

Hap_11 (scored in 15 specimens) is restricted to Germany. In Hungary, haplotype Hap_16
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was found in 6 sepcimens collected in 2016, 2017, 2019 and 2020. This supports the establish-

ment of an over-wintering population, in accordance with the observational studies (Fig 1).

The overall haplotype and nucleotide diversity were of 0.849 and 0.005, respectively, and the

overall Tajima’s D was of -2.100 (P < 0.001) (for calculation raw data see S1 Appendix). These

diversity values are in accordance with observational data of the species in the continent, alto-

gether suggesting a general population expansion in Europe.

The phylogeographic analysis indicates the frequent admixture events between European

populations and also highlights possible main routes of dispersal (e.g. Belgium-Italy axis) (Fig

2). The current Belgian population at Maasmechelen, formerly hypothesized to be the initial

introduction site into Europe, consists of a mixture of three haplotypes (Hap_1, Hap_3,

Hap_6). Since we do not know if the same haplotypes were already present in 2008, the year of

the first observation of Ae. koreicus, we cannot draw strong conclusions, but future sequencing

efforts, involving more sequences may clarify the genetic diversity and the role of the three

identified haplotypes of this study. A previous study on establishing a DNA-barcode reference

library for mosquitoes in Belgium also found high intraspecific divergence in Ae. koreicus,

Fig 1. Haplotype network of Aedes koreicus constructed with POPART, including 130 mitochondrial COI sequences from

specimens collected in five countries (Belgium, Italy, Slovenia, Germany, and Hungary). The 31 haplotypes are indicated on the

figure (Hap_1-Hap_31). Different colors represent different sampling sites within the given country.

https://doi.org/10.1371/journal.pone.0269880.g001
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based on a 658 bp long fragment of the mitochondrial COI gene obtained from two specimens

collected in 2008 [46]. It can be also possible that Maasmechelen in Belgium was not the initial

introduction site for Ae. koreicus into Europe, merely it was found there at the earliest, or mul-

tiple introductions shaped genetic diversification of the early populations. Future studies are

necessary to verify any of these hypotheses.

On the other hand, since the discovery of the invasive Ae. albopictus in the north-eastern

part of Italy in 1991, several local surveillance and control programs were implemented in the

region. Non-colonized (i.e. tiger mosquito-free) areas were also monitored. However, Ae. kor-
eicus was first detected in Italy in 2011 [9], suggesting the species was not present before in

that specific region. Our analysis indicates that the first population that emerged in Italy prob-

ably originated from Belgium. Trading activity of specific goods between Belgium and Italy

(back and forth) might be one factor in establishing a major genetic dispersal route between

these countries, as presented on Fig 2. The admixture was also highlighted between the local

populations within Italy since the analysis revealed four locations where the populations

Fig 2. Phylogeography of Aedes koreicus based on COI haplotypes in Europe. The geographical placement of pie charts (colored by haplotype distribution) on the

map corresponds to the locations where mosquitoes were collected, and the circle sizes correlate with the number of sequences obtained at each location (for more

details about the locations see S1 Table). Arrows indicate the potentially most important dispersal routes with significant statistical support (S3 Appendix). (Map

source: ©OpenStreetMap, openstreetmap.org: OpenStreetMap contributors, the graphical display may be used under the terms of CC BY 4.0 license).

https://doi.org/10.1371/journal.pone.0269880.g002
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consist of multiple haplotypes (i.e San Michele all’Adige, Villamontagna, Castel Ivano, and

Grigno) in the province of Trento (Fig 2). Although these populations are characterized by the

haplotypes Hap_3 and Hap_12 being the most frequent in our sample set, they share several

haplotypes with Belgium and Hungary as well. In the case of Slovenia, the sampled populations

share haplotypes with Belgium, Italy, and Hungary, making it hard to define potential routes

of introductions, along with the fact that we could involve limited number of samples in our

analyses (Fig 2).

We revealed the presence of a diverse population in Hungary, which might be explained by

common exchange events with the populations in other countries. Since this Ae. koreicus pop-

ulation seems to have been established in a short period but is restricted to the city of Pécs

[23], the economic center of the Southern Transdanubia region, the high observed haplotype

diversity could correlate to the busy international transport of goods through the city. The

other Hungarian population at Budapest was represented with a limited sample size in our

analyses, but unambiguously conected to the Italian node. The German population displays

multiple haplotypes, and the clustering clearly indicates a separation from all other populations

and nodes (Figs 1 and 2). It may be related to previous observations that the population in Ger-

many was described as the morphological variant of Ae. koreicus originating from mainland

Korea [20]. All other populations in Europe show the morphological characteristics of the

Jeju-do Island population (South Korea). The main distinguishing feature between the two

variants is that individuals of Ae. koreicus from Jeju-do Island have a fifth hind tarsomere with

an incomplete pale basal band which is not the case for the specimens from the mainland [47].

These perceptions lead to the hypothesis that the German population might be originating

from an independent long-distance introduction event.

Based on these results, we hypothesize a silent expansion of the species throughout Europe,

with possibly more introduction events than currently identified. Although the routes or direc-

tions of the expansion is hard to predict, we pointed to a connectivity between Belgian, Italian

and Hungarian populations, and a clear separation of the German population. Considering

the yet unverified but hypothesized disease vector potential of Ae. koreicus [48–50], the discov-

ered population interconnectivity underlines the potential rapid dispersal of associated exotic

pathogens on these dispersal nodes [51]. Meanwhile, the high overall COI diversity may indi-

cate the underrepresentation of the present sample set. Even if we involved specimens from all

known established populations in Europe, the present strong expansion signal underlines the

importance of extending the sampling efforts for future investigations. Considering the pres-

ent genetic heterogenity and clustering results, we present similar pathways as a driver of the

expansion of Ae. koreicus across Europe, as seen in the case of other invasive mosquitoes, e.g.

transportation together with specific goods, or with human movements [2, 28].

Complete mitochondrial information and nuclear draft genome sequence

Long-reads obtained with the Oxford Nanopore technology allowed for the construction of

the complete mitochondrial and nuclear genomic information, subsequently verified with Illu-

mina short-reads. As a result of combined sequencing methods we were able to retrieve a

high-quality mitochondrial genome sequence. Based on the recently published Ae. koreicus
mitochondrial genome sequenced from a specimen collected from the Korean Peninsula

(accession number: MT093832), the final product was annotated. The length of the generated

mitogenome (deposited on GenBank with accession number: MZ460582) is 15,843 bp, due to

a three basepair long insertion (AAT) at position 9,961. The nucleotide differences between

the mitochondrial sequences isolated from specimens that originate from Korea (native range)

and Europe (Hungary, invaded range) are indicated in Fig 3.
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Initial assembly of the complete genome yielded a total length of 874 Mb, comprising

65,548 contigs with a contig N50 length of 18 kb. After two iterations, we generated a final

genome assembly of 879 Mb (GenBank Submission-ID: 9093984, Sequence Read Archive-IDs:

SRR14975285, SRR14975286). BUSCO analysis showed that 2,448 (74.52%) of 3,285 Diptera

BUSCOs were detected in the final Ae. koreicus genome assembly, with 2,380 (72.45%) and 68

(2.07%) being identified as complete and fragmented respectively (S2 Table). The mapping

rate test suggested that more than 97.01% of the normalized Illumina PE reads were properly

mapped to the genome, and of these 89.06% mapped to their mates. These reads covered

98.60% of the genome assembly. This novel generated draft genome contiguity and N50

lengths lag behind the insect genomes added to public databases in recent years [52]. As a

neglected invasive mosquito species with yet unverified disease vector potential in Europe, this

first draft genome may promote further studies from genome annotation to population

genetics.

Conclusion

Major introduction pathways of exotic mosquitoes and related pathogens are primarily passive

and associated with human activities, as global trade and tourism. Since invasions are driven

Fig 3. The complete mitochondrial genome of Aedes koreicus isolated from Hungary. Reads generated with Oxford

Nanopore and Illumina sequencing techniques were mapped to the mitochondrial genome with accession number

MT093832 with Minimap v.2.17. Gene annotation and visualization were performed in Geneious Prime 2021.1. The

yellow circle represents the coding sequence (CDS) or gene product, the red circle represents the sequence of the

complete gene, whilst the blue marks in the inner circle represent the single nucleotide differences (n = 74) between

the genomes of Ae. koreicus isolated from Hungary and Korea.

https://doi.org/10.1371/journal.pone.0269880.g003
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by multiple interacting factors across global, regional, and local scales, we need to investigate

the phenomena from a more complex point of view to understand the mechanisms of IMS dis-

persal. Our study revealed a mixing of European Ae. koreicus populations and we revealed

multiple dispersal routes for this species. The most frequent geographic dispersal occures

along the Belgium-Italy axis. Interestingly there are two different scenarios in Germany and

other European countries, based on the population genetic patterns. At this point, we do not

know the underlying factors behind the two different situations. To get a clearer picture, more

studies are necessary. The first published complete genomic data opens the possibility to better

understand the genetic features which may facilitate the successful establishment and survival

of the species. Based on our results we suggest three key actions of future investigations for

which we provide the baseline data. 1: Enforced and harmonized surveillance of this species

with common IMS monitoring activities; 2: Re-analysis of previously collected Ae. japonicus
specimens to reveal possible misidentification; 3: Perform large-scale and more detailed

genetic analysis with more samples, using other genetic markers, such as Single Nucleotide

Polymorphisms.
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Kuczmog, Zsófia Lanszki, Péter Urbán, Rubén Bueno-Marı́, Zoltán Soltész, Gábor
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Writing – review & editing: Kornélia Kurucz, Safia Zeghbib, Daniele Arnoldi, Giovanni

Marini, Mattia Manica, Alice Michelutti, Fabrizio Montarsi, Isra Deblauwe, Wim Van Bor-

tel, Nathalie Smitz, Wolf Peter Pfitzner, Christina Czajka, Artur Jöst, Katja Kalan, Jana Šuš-
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